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Executive Summary 

Background 

Video Machine Learning (VML) is a rapidly evolving field of computer vision that has the potential to 
automate video-based analysis within the daily performance environment (DPE). VML has practical 
implications for the timely provision of performance data within the training or competition environment. 

Purpose 

The aims of this Insight Report on VML use in the Australian High Performance (HP) sport system were to: 

• Provide a current snapshot of performance support practitioners’ perspectives and use of video 
analysis techniques and/or VML to analyse sport performance in the DPE; 

• Provide an overview of VML applications, challenges, and best practices in HP sport;  
• Develop recommendations for best practice implementation of this technology in HP sport. 

 

Methodology  

A movement science focus group developed an online survey for performance support practitioners on their 
use of video analysis (both qualitative and quantitative), as well as their current and planned VML use and 
their perspectives on barriers for integrating VML within the DPE. An external project lead, with specialist 
expertise in VML in HP sport, was appointed to develop the insight report. The project lead was responsible 
for assisting with survey design; summarising the survey responses; providing relevant information on the 
technology, challenges and barriers to integration, as related to HP sport; and providing summary 
recommendations for future use of VML in the DPE. 

Support Practitioner Survey Findings 

• The large majority of performance support practitioner survey responders use video analysis to 
support the coach and athlete. 

• Less than one third currently use VML within the DPE, with most of these responders using sport-
specific applications (such as Sparta2 for swimming).  

• More than three quarters would like to use VML across various scenarios in the DPE to expedite 
performance data feedback to the coach and athletes. 

• VML integration barriers included communication between practitioners across the network; accuracy 
and reliability concerns; time constraints; expertise; access to resources; and ‘buy-in’ from coaches 
and athletes. 

Key Insight Report Recommendations 

• Specifically trained VML models will produce better results for a given activity, athlete and testing 
environment than general VML models. 

• The measurement technology (either current or VML approach) should reflect the sensitivity required 
for the performance parameters being assessed (Quality Assurance). 

• Ensure model training datasets are representative of the activity and athletes being investigated 
(especially for use with some Paralympic athletes and atypical movement patterns) or VML outputs 
will be sub-optimal. 

• Provide practitioner professional development and access to technical expertise for long-term 
implementation of this technology in the DPE. 

• Develop VML best practice guidelines. 
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Project overview 

Performance support practitioners (practitioners) throughout the Australian High Performance (HP) sport 
system are tasked with supporting coaches and athletes in skill development, performance analysis, 
technique analysis, and decision-making by providing evidence-based recommendations. Technical analysis 
in training and competitive environments frequently includes video analysis and evaluation of task 
performance, through qualitative and quantitative means. The balance between deciding what and when to 
test with vision-based analyses is an ongoing challenge for practitioners. The ’gold-standard’ of optical 
motion capture in a lab can provide accurate kinematic data, but can be time-consuming and resource 
intensive, and lacks ecological validity which often leads to the outcome data not translating to on-field 
movement characteristics (Di Paolo et al., 2023). Whilst vision-based analysis in applied training and 
competition environments replicates the demands of the sport, feasible methods to obtain timely, valid, and 
reliable quantitative data are sometimes limited.  

Video Machine Learning (VML) is the creation and use of models that have learned from a dataset to 
recognise distinct image features in video frames. The nature of this technology allows access to a large 
amount of information and analysis possibilities for investigating human movement with rapid processing 
times. Due to the complexity of these data processing, it is necessary to understand the limitations and 
usability of various VML technology before choosing an application appropriate for the performance question. 
The rapidly changing nature of computer and video technology, particularly in sporting applications, requires 
transparent external considerations around measures, limitations, and considerations for its application. 
Given the substantial impact that VML could play within the Australian HP Sport system, practitioners could 
benefit from expanding their knowledge about the processes underpinning VML and its practical applications 
to ensure a more informed use of this technology. 

At present, VML technology use is primarily in the exploration phase throughout the Australian HP sport 
system. There may be documents and guidelines written by individuals, however, there are no global 
references to guide decision making, and the resources that do exist may be outdated and provide conflicting 
advice. In most cases the resources that do exist are unlikely to have been peer reviewed by experts within 
the field. It is proposed that a new set of guidelines be developed to provide up-to-date evidence-based 
recommendations around various VML software and processes for practitioners working in HP sport. To 
inform these recommendations, we require a greater understanding of the applications of VML in HP sport 
and perspectives of practitioners who are currently using video-based technologies to evaluate athlete 
performance. 

The aims of this insights report were to:  

(i) Provide a current snapshot of Performance Support Practitioners’ perspectives and use when 
using video analysis techniques and/or VML to analyse sport performance in the DPE; 

(ii) Provide an overview of VML including applications, challenges, and best practices of this 
technology in HP sport;  

(iii) Develop initial recommendations for best practice implementation of this technology in HP sport. 
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1. Glossary of Relevant Video Machine 
Learning and Data Analysis Terms  

Video machine learning (VML) = Application of machine learning techniques and algorithms to analyse and 
process video data for a variety of applications, such as, event recognition, object/point recognition, and 
human pose estimation. 

Human pose estimation (HPE) = Estimation of the positions and orientations of key body joints and 
segments in video frames. 

VML Software = are applications or software packages (either open source or commercial) that perform 
aspects of VML processing such as pose estimation. Common examples, as related to use with sporting 
applications, are DeepLabCut; Open Pose; BlazePose; AlphaPose and OpenCap. The Australian Institute of 
Sport have developed their own VML software called Pipelines. 

VML Training dataset = Collection of annotated (real or synthesised) video or images (sometimes with 
complementary data such as inertial sensors outputs; 3D body scans; motion capture information etc.) that 
are used to teach a VML model how to recognise and classify specific features within videos. Common 
examples of VML datasets are COCO; HumanEva; Human3.6; TNT15; Halpe-FullBody; AGORA, ASPset-
510; PIFU and ICON. 

ASPset-510 = Australian Sports Pose Dataset that includes videos with 3D pose annotations across a 
variety of dynamic sports-related actions in applied environments. 

Common Objects in Context (COCO) = Widely used dataset in VML which includes a comprehensive 
collection of annotated images and videos of people. 

VML Training = The process where a computer ‘learns’ from examples of annotated videos (training dataset) 
and then adjusts its internal settings (see “weights” below) based on those examples over many training 
iterations (e.g., 100s of thousands). This process helps the computer learn to recognise patterns and make 
classifications in new, unseen videos. 

Transfer learning = A method of using a pre-trained model on a large dataset as a starting point to train a 
new model for a specific video analysis task. 

Ground truth = Reliable and objective reference data (e.g., annotated video frames) that is used to validate 
VML models. 

Convolutional neural network (CNN) = type of deep learning model designed for analysing and processing 
video data. It uses specialised layers called convolutional layers to automatically extract and learn features 
from input data, which is effective for tasks like image object recognition and event classification. 

Weights = Numerical values that determine how important the features from input data are to the final output 
classification. Adjusting these weights is a fundamental aspect of VML model training and fine-tuning to 
improve the accuracy and performance of the model. 

Red-Green-Blue (RGB) = Primary colour channels of Red, Green, and Blue used to create and display video 
images. Each pixel in a video frame is defined by its specific R-G-B values, which determine the colour and 
appearance of the pixel. 

Functional Data Analysis (FDA) = statistical methods used to analyse continuous, waveform, or time series 
data where these data are modelled as functions. 

Computer Vision (CV) = Computer vision is concerned with the automatic extraction, analysis and 
understanding of useful information from a single image or a sequence of images. It involves the 
development of a theoretical and algorithmic basis to achieve automatic visual understanding. 
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2. Summary of insights report findings 

Performance Support Practitioner Survey findings 

• Video analysis techniques to support athletes and coaches are used frequently across a broad range of 
sports and settings (indoor and outdoor), during both training and competition. 

• Video analysis is primarily utilised for within- and post-session qualitative feedback and post-session 
quantitative feedback.  

• Only one in four practitioners provide quantitative feedback as part of video analysis of a given task within 
a training or competition session. 

• Barriers identified for using video analysis techniques include: 
o Time/labour constraints,  
o Limited access to resources, and  
o Lack of expertise. 

• Practitioners have a good understanding of VML principles and the potential benefits of implementing this 
technology in HP sport.  

• Nearly one third of practitioners are currently implementing and/or testing VML technology in sport. 

• Around three quarters of practitioners are planning to implement or are interested in implementing VML 
technology in the future. As current applications and plans for VML across the network varied in terms of 
sports, settings, and the software being used, there is a need for transparent guidelines for evaluating 
their validity and reliability.  

• Practitioner identified challenges for implementing VML are:  
o communication between practitioners across the network,  
o accuracy and reliability of models,  
o time constraints,  
o expertise, access to resources (e.g., appropriate computer hardware), and 
o ‘buy-in’ from coaches and athletes. 

Applications of VML  

• VML has the potential to substantially improve the speed of data analytics in a non-invasive manner, 
allowing for more timely and representative performance feedback to coaches/athletes within training and 
competitive environments.  

• There are two main applications of VML technology typically associated with performance support 
servicing in the Australian HP sport system:  

o performance analysis involving event and/or action recognition, and  
o biomechanical analysis, such as, pose estimation and derivation of athlete kinematics. 

• From a quality assurance and VML applicability perspective, understanding what represents a meaningful 
change for the end-user and the required sensitivity of the quantitative outputs is essential to determine if 
VML is an appropriate analysis methodology. 

 

VML Technology Considerations 

• Whilst bespoke, opensource, and commercial VML approaches have had some published levels of 
validation, their reported accuracy varies and application to sport-specific environments, tasks, and 
athletes will further influence model accuracy. 

• Quality of data-in will improve quality of data-out of a model; practitioners will need to consider how video 
data are captured, the size of the datasets, and whether the datasets are athlete and sport-specific and 
translatable for the given task.     

• Open source and commercially available software with user friendly interfaces and customisable 
performance analytics may be more feasible for practitioners to implement across the Australian HP sport 
system than developing bespoke solutions. 
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3. Introduction to VML 

Machine learning is the creation and implementation of computer algorithms that have learned from a dataset 
to classify or estimate an outcome. Machine learning techniques in sport research are gaining momentum 
and are used across a variety of applications, such as, sport injury prediction (Rossi et al., 2018), the 
detection of movement insufficiencies in injured athletes (Richter et al., 2021), and the estimation of kinetic 
outcomes (e.g., ground reaction forces, joint moments) from motion capture data (Kipp et al., 2018; Mundt et 
al., 2020). VML refers to the arm of machine learning algorithms that are specific to image recognition in 
video. This can include classifying specific events or actions during sport (e.g., a goal attempt in soccer or 
foot strike detection for automated analysis) (Rangasamy et al., 2020), player tracking (Vats et al., 2022), 
identifying objects or landmarks based on their visual characteristics (Mathis et al., 2018), and/or estimating 
joint centres and body segments based on biomechanically-informed datasets; Human Pose Estimation 
(HPE) (Badiola-Bengoa & Mendez-Zorrilla, 2021).   

VML models are deep neural networks which are often in the form of a convolutional neural network (CNN), a 
highly efficient algorithm for image processing (Yamashita et al., 2018). CNNs are a class of neural networks 
that are, in essence, representations of neurons within a human brain and are inspired by the organisation of 
our visual cortex. These models use image feature learning where the probability of a match is calculated, 
known as a “weight”, between the Red-Green-Blue (RGB) pixel characteristics for a region of the video 
frame, known as the “input”, and the RGB characteristics of the region surrounding the object, referred to as 
the user-defined “ground truth”. CNNs include several layered networks that perform different calculations 
and manipulations of the image before classifying the object (Figure 1).  

 

Figure 1. Bar chart Visual representation of a convolution neural network for image feature recognition. 
(https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/) 

 

Consider a CNN that has undergone training to identify the centre of a cricket ball in a collection of video 
frames. The first layer of the network scans small sections of the entire image systematically (across each 
RGB channel) extracting basic features of the image into arrays of pixel values. The arrays from this first 
layer then taken through a range of other layers (e.g., convolution layers) that reduce their size, but increase 
their complexity – making it more effective at detecting subtle differences in image features (i.e., the cricket 
ball travelling across the field of view). The final “fully connected layer” classifies the object in the image, 
along with a “loss” value – how accurate is the classification compared with the ground truth. The output in 
this example could be the x- and y-axis pixel coordinates of the estimated centre of the cricket ball in each 
video frame. Training of CNNs involves many iterations of the process detailed above (e.g., 100s of 
thousands) where the weights in these layers are continually optimised to minimise loss and improve the 
accuracy of the final model. 

 

https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
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When developing VML models, the process of transfer learning is often used to significantly reduce the size 
of the training dataset and the time taken to train the overall network. Transfer learning uses a set of weights 
previously trained to identify image characteristics in a very large image database as a starting point for a 
new model (Mathis et al., 2018). Transfer learning involves updating the pre-trained weights by comparing 
the input with the ground truth in new images (e.g., a dataset of manually labelled body landmarks on an 
athlete). As an analogy for this type of learning, imagine a person is interested in bird watching; they already 
have the capacity to recognise birds in the world, but are now shown select species of birds in a forest by an 
expert (think of this as the ‘ground truth’). With practice they become more efficient at spotting and classifying 
these species of bird (except that VML models, compared with the person, can move, and visually scan the 
forest at lightning speed).  

Given the speed in which VML software can detect features in large video datasets, these tools have been 
identified to have the potential of being implemented for performance and biomechanical analyses within HP 
sport. These tools can potentially be used to automatically process videos of athletes to expedite player 
tracking information, biomechanical variables and key time events. The potential outcome can include the 
ability to derive performance visuals (e.g., video tracking overlays and figures) which may be used to support 
feedback to athletes and coaches (Figure 2). 

 

Figure 2. Example of VML software DeepLabCut labelled video output. 
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4. VML Applications in Sport 

4.1 Performance analysis 
VML methods can be used analyse performance outcomes, often in competition or during team-based 
matches where athletes are tracked across a field, court, or swimming pool. Accurately detecting and 
tracking players in competition or team-based sports provides crucial training and competition insights and is 
a crucial component of the role of a performance analyst. Professional sporting codes around the world (such 
as basketball, football and tennis) have also started using VML approaches for player tracking information. 
VML approaches have the significant advantage over other tracking modalities in that they allow for the 
tracking of both teams (or opponents) concurrently, providing potentially crucial information on team and 
individual tactics and strategies. This information can also potentially be used in the future to develop further 
novel team tactics and strategies using other machine learning approaches. This approach has already been 
employed by Tennis Australia (in an exploratory analysis) to leverage generative machine learning process 
from prior player tracking data to develop strategies against opponents.  

Highlighting the recognition of the need for quality control and accuracy of the optical player tracking system 
output, the International governing body for football (FIFA) outlines a comprehensive process for determining 
accuracy levels against gold standard measurement techniques (FIFA, 2022). Processes for assessment 
includes comparative analysis of player and ball movement (within a 30x30m test area covered by Vicon 
motion cameras) using a series of agility tests and specific football movements. Accuracy of straight-line 
running velocity is compared using laser tracking and a field survey with quantity surveying equipment is 
used to provide comparative absolute position relative to position within the pitch. While stadium/court level 
player tracking systems using VML approaches and in-situ calibrated systems are not a feature within 
Australia currently, there is potential that this could become viable in future years. 

In conjunction with player tracking, VML typically within HP sport scenarios would also incorporate event 
recognition. These event recognition functions can use image feature, player tracking, and/or pose estimation 
methods to differentiate specific sports events. For example, a Soccer Video Scene and Event Dataset was 
developed to include 100 short videos of key game events such as corners, free-kicks, goals, and penalties 
(Hong et al., 2018). The location of clusters of players on the field generally differs between each of these 
events, and thus, represents different image features in the video frame that can be extracted by the VML 
model. Several CNN models, utilising transfer learning methods, were trained on the dataset of these events 
and their known classification. These models had capacity to automatically detect these events in video of an 
elite level soccer game, based on player positions on the field. Accuracy varied from 74-89% for the two best 
performing models, where reduced accuracy was observed when the number of event types included in the 
dataset increased from four to six. A limitation of this type of modelling is that similar player positions on the 
field can occur between two or more event classifications, such as a free kick located near the corner of the 
field and a conventional corner. The importance of appropriate feature selection methods (e.g., the number of 
event classifications included in a dataset) to minimise classification errors is discussed further in this 
document. Another application of event recognition models included a dataset of 200 short video sequences 
of successful soccer goals from a variety of settings and camera angles and 200 sequences of non-goals, 
with a variety of events such as near-miss shots sourced from YouTube.com and classified by the 
researchers (Tsagkatakis et al., 2017). CNN models, again utilising transfer learning, were then trained to 
classify goal events in soccer games with one type of VML algorithm showing near perfect event detection 
accuracy (98%). Event recognition models can reduce time spent encoding the frequency of key game 
analysis events throughout a game by practitioners and can expedite review of these events when providing 
feedback to athletes and coaches.  

As an example, within the Australian HP system, Swimming Australia has provided race analysis for its 
targeted swimmers in benchmark events over the last 25 years to assist coaches/athletes to breakdown 
components of the athletes’ racing performance. Key skill-based and pacing metrics are provided over each 
lap of the race to gain insights into areas for improvement and for comparative analyses. Traditionally this 
has been conducted with a significant human resource cost with analysts individually annotating races post-
race to develop these metrics. Since 2017, Swimming Australia has led the development of a semi-
automated system called Sparta 2 which has incorporated a VML module for tracking of all swimmers in the 
race (Elipot, 2019; Hall et al., 2021). This system uses both an individual tracking function relative to a pool 
calibration procedure with embedded event recognition routines to determine functions such as identifying 
individual stroke cycles. The VML module consists of a 2-step CNN. The first step processes the entire video 
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frame (resolution: 4K; bitrate: 150mb/s) and aims to approximately detect the swimmers' position in the 
image. Small image crops are then produced around each head and processed to accurately identify the 
centre of each swimmer's head (second step). This 2-step approach gives the best trade-off between 
detection accuracy and computation speed. Once the swimmers' head are localised in the image, a final 
series of convolutions is applied to perform the stroke detection. To be able to implement this VML module, 
Swimming Australia built a very large training dataset which was entirely manually annotated by trained 
operators. This dataset contained approximately 900k instances representing the centre of a swimmer's head 
racing the 4 strokes and in very diverse conditions (12 different pools, indoor and outdoor; international or 
domestic environments; different camera angles, lenses and focal lengths etc.). This work was performed 
over an 18-month period. 

The Lead Biomechanist at Swimming Australia (Dr. Marc Elipot) led a project to determine the reliability of the 
VML performance metric outputs of Sparta 2 when compared to trained operators. Results showed that the 
Sparta 2 VML system produced substantially reduced typical error rates compared to manual annotation 
across most of the metrics when analysed at a 95% confidence interval. While not a validation process, in 
that there was no ground truth comparison, the VML system was shown to be substantially more reliable. 
Variations in the manual annotation were attributed to human error and calibration errors in metrics 
associated with manually using lane rope buoys to determine criterion distances. 

Event recognition can also include classifying the type of action(s) performed by an athlete. For example, a 
VML model was trained on a dataset of tennis actions comprising video from 55 different subjects performing 
multiple repetitions of distinct tennis shots (Gourgari et al., 2013). This model was able to detect several key 
tennis actions, such as backhands, forehands, and services with an accuracy of 88.16% (Vinyes Mora & 
Knottenbelt, 2017). Likewise, Rezaei and Wu (2022) utilised a layered VML approach of several algorithms to 
classify when the action of heading occurred during soccer. Figure 3 summarises the key stages of their VML 
modelling approach. They utilised a pre-existing soccer video dataset, (Soccer DB - (Jiang et al., 2020)), 
which included over 60,000 annotated images of the ball. Automatic detection of the ball was developed 
through a pre-trained object-based detection algorithm that was applied to the training dataset to identify the 
location of the ball (Figure 3). The frames were then automatically cropped around the ball, known as the 
‘bounding box’, and the cropped images were then applied to another deep learning algorithm known as a 
temporal shift module, for spatiotemporal feature aggregation - trained to classify when the ball met the 
player’s head. The model ‘DeepImpact’ correctly identified 92.9% of headers in video of five new soccer 
games, which included 546 headers and 60,018 non-header actions. These recognition models can have a 
variety of implications for practitioners, with injury monitoring being one such application. In this example, 
there is emerging evidence that repeated sub-concussive impacts associated with soccer heading may pose 
a risk for cumulative brain changes (Lipton et al., 2013). A model like DeepImpact could be used to track 
overall team header exposure across training and competition, and subsequent models have been 
developed to include individual player tracking and monitoring. 

 

Figure 3. Header detection VML model summary. Reprinted from “Automated soccer head impact 
exposure tracking using video and deep learning” by A. Rezaei, 2022, Scientific Reports, 12, p3.  
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4.2 Biomechanical analysis 
To preserve ecological validity when analysing an athlete’s performance and movement patterns, the ability 
to quantify critical variables within a training session or competition in a non-invasive manner is paramount. 
The caveat to this is that the results must be accurate and reliable within the bounds of the sensitivities 
required to detect a meaningful change or discriminate between performance levels. There is significant 
potential for VML technologies to expedite video-based biomechanical analysis. However, the limitations of 
technologies need to be understood and addressed based on the end use-case. Included in the 
consideration is an understanding of the movement pattern to be analysed and therefore the resulting 
methodologies to be employed (e.g., single versus multi-camera; 2D versus pseudo-3D approximations; 
marker-based tracking versus estimated joint centres). 

For bespoke applications, a simple marker-based system can be appropriate to provide key tracking 
information. To illustrate an example in this area, in cycling, tracking the approximated hip position with a 
marker-based system using image-recognition techniques has been used within the Australian HP system 
previously as a method to investigate and quantify the effectiveness of sprint starting techniques. Free and 
open-source video analysis programs (such as Tracker – a video analysis and physics modelling program - 
https://physlets.org/tracker/) automatically track identified markers in a pre-calibrated space to allow for rapid 
performance-based feedback to be provided to athletes within a session, thereby reinforcing skill modification 
interventions. 

While the previous cycling example is representative of a standard image-recognition computer vision (CV) 
approach rather that technically a VML system, these marker-based systems can expand the tracking 
complexity through the additional use of VML processes. Point recognition VML models are suitable for 
translational movements with small user defined targets (Zhang & Yang, 2021) which can include marker-
based systems. The open-source VML software DeepLabCut (Mathis et al., 2018) was originally developed 
for tracking animal behaviour based on user defined landmarks in video and offers a higher level of 
customisation. This software has been applied in sport research to reduce time associated with manual 
digitisation of body landmarks. As an example, a simple marker system (black painted circles) was applied to 
the skin over key body landmarks (e.g., shoulder, hip, knee) on competitive swimmers and video was 
captured of underwater glide trials to evaluate hydrodynamic outcomes (Papic et al., 2021). A neural network 
model consisting of 400 annotated frames of glide video was trained to detect these landmarks and digitised 
new glide videos at an average rate of 54 landmarks per second. A calibration procedure and subsequent 
kinematic analyses were then performed to derive 2D kinematic outcomes, such as, glide factor (an estimate 
of the swimmer’s hydrodynamic resistance), angles, and velocities.  

Despite their popularities and the outstanding results reported within CV domain, VML is still relatively new 
technique for quantitative motion analysis within the biomechanics discipline. The majority of existing VML 
techniques or technologies are derived from human data that are prepared and annotated by untrained 
personals, or by those who have limited background in the mechanics of the human body, shape, joints and 
functional movement patterns. Within the biomechanics domain, VML technologies can be used to 
approximate an underlying skeletal structure of a person using one of two main general methodologies. Over 
the last decade much of this development and research has been associated with the Human Pose 
Estimation (HPE) VML processing. More recently, and of interest to the biomechanics discipline, is the 
development work utilising shape analysis and incorporation of complementary technologies. 

The shape analysis techniques are a promising area of development that revolves around the identification 
and segmentation of body shape and body segments. Included in these technologies are the inclusion of 
complementary information (termed 2.xD features within the Computer Vision field) such as normal and 
depth maps extracted from standard 2D image views. These allow extra layers of information to assist in the 
derivation of 3D shape, 3D features, 2D and 3D segments, body lengths and structural hierarchy. All of this 
information then provides extra detail and/or constraints that can be applied during the VML training process. 
The significant benefit of this methodology is that it has the scope to provide alignment to a more 
comprehensive and representative anatomical framework with the ability to quantify the rotation of segments 
that can be missing when using a single joint centre estimation point. This then has the potential to provide 
potentially greater representative movement pattern information.  

While computationally and technically more complex than current pose estimation models, the potential 
benefit of this type of solution is to derive a more accurate biomechanically and anatomically informed 
outcome to counter the limitations in pose estimation models being developed in the CV domain. Less 
computationally expensive variant can also be facilitated under certain conditions, especially in cases where 
3D surface representations of the human shapes are not required. Recent work published in this space using 
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synthetically and semi-synthetically generated data ((Patel et al., 2021; Saito et al., 2019; Xiu et al., 2022) 
using the AGORA, PIFU, ICON databases and technologies respectively) indicate that by instilling additional 
2.xD features with anatomically and biomechanically relevant information, the VML methodology will result in 
more accurate and robust VML models with biomechanically meaningful outputs. 

The second methodology centres around the development of human pose estimation (HPE) models through 
the localisation of annotated joint centre or body landmark approximations and this has become a rapidly 
growing area of research in the VML domain with a seemingly endless array of applications. HPE models 
differ from point recognition models as they estimate the centre of the joint and segments of the body rather 
than a specific landmark or target (e.g., the location of the marker positioned on the athlete). There are 
numerous opensource software for marker-less HPE such as OpenPose (Cao et al., 2017), BlazePose 
(Bazarevsky et al., 2020), AlphaPose (Fang et al., 2022), and OpenCap (Uhlrich et al., 2022) which include 
models that were trained on a variety of datasets and learning algorithms. The Common Objects in Context 
(COCO) dataset, for instance, includes over 60,000 annotated images of people (Lin et al., 2014). An 
exemplar learning algorithm for HPE are Part Affinity Fields (PAFs) which are used in the OpenPose model 
and comprises of confidence maps and 2D vector fields that encode the location and orientation of body 
segments throughout the image (Cao et al., 2017). This method is a ‘bottom-up’ approach for detecting pose 
and is common in HPE software (e.g., ‘DeeperCut’ (Insafutdinov et al., 2016)). These algorithms first detect 
all the human joints in an image and then assemble poses for everyone, linking segments for each person, 
as illustrated in Figure 4. Camera calibration procedures can then be applied to 2D coordinate data from 
multi-camera HPE to reconstruct pseudo-3D poses using triangulation methods (Köykkä et al., 2022). There 
has also been some opensource models that have a 3D variant (eg. 3D OpenPose). Concurrently, there has 
been recent additional attempts to develop specific 3D pose datasets incorporating syntheised information 
from animation sources, or small datasets with limited movement patterns from indoor marker-based system 
(eg. Human3.6M, HumanEva, Halpe-FullBody, AGORA).  

 

Figure 4. Example of 2D multi-person HPE. Reprinted from “DeeperCut: A Deeper, Stronger, and Faster 
Multi-Person Pose Estimation Model” by E. Insafutdinov et al., 2016, Proceedings of the 

Computer Vision–ECCV: 14th European Conference, Amsterdam, p35. 

 

In either 2D or 3D pose estimation approaches, the main objectives were to train ML models to be able to 
predict the 2D or 3D ground truth labels, or representations of the labels (e.g., heatmaps). This is performed 
subject to loss/cost function that is defined to minimise the mean squared error (or similar) between the 
predicted results and the ground truth. For more information summarising the different approaches used in 
2D and 3D pose estimation and the limitations, advantages and disadvantages of each, the following articles 
are suggested (Dubey & Dixit, 2023; Needham et al., 2021; Wang et al., 2021; Zheng et al., 2023). 

It is important to note that most of these 2D and 3D HPE models do not contain the ability to provide 
individual segment orientation analysis (which is similar to the limitation of standard traditional ‘3D’ digitising 
systems like APAS or Peak), as the segments are only defined as a vector between scalar points 
(approximated joint centres). 2D images are only able to provide 2D model outputs with reference to a (X,Y) 
cartesian coordinate system and the majority of VML publicly available pose estimation models and 
databases incorporate this type of information. This can be thought of as equivalent to manual 2D video field-
based analysis undertaken by performance support practitioners through 2D digitising programs like 
SiliconCoach or Kinovea. However, as trained performance support practitioners performing 2D manual 
digitising, there is underpinning quality assurance processes and knowledge that is assumed to be applied. 
This involves being cognizant of the constraints that this type of testing involves (such as camera position 
relative to plane of action and that it is not possible to accurately provide 2D joint angles when movement of 
those segments is outside this plane). Coupled with this is an anatomically reference training process that 
practitioners undergo to assist with the identification of the functional joint centre locations through a range of 
motion about each joint. VML approaches are not able to discriminate these features and will report their 
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derived joint angle value irrespective of these limitations. It is therefore essential that the performance 
support practitioners take on a quality assurance role to provide a manual hygiene oversight when utilising 
these technologies.  

True 3D outputs from 3D HPE models would require segment orientation, which necessitates a minimum of 3 
markers per rigid segment being accurately identified (as per the data collection and subsequent modelling 
pipeline used in marker-based systems like Vicon). The 3D HPE models are termed pseudo-3D in that they 
only have a derived (X,Y,Z) with respect to a global coordinate system. From a technical perspective, while 
the global space is 3D, the human model remains essentially 2D given the true 3D pose (3D position and 
orientation) of each rigid segment is not able to be determined. The use of a triangulation approach from the 
output of multiple cameras in HPE also makes these outputs susceptible to errors in estimating joint centre 
from a given camera view. Therefore, high accuracy of 2D pose estimation of each estimated joint position 
from each camera view is required for adequate 3D reconstruction (Kitamura et al., 2022). Number and 
optimisation of camera position relevant to the movement pattern being analysed, in addition to the accuracy 
in determining the intrinsic and extrinsic camera and volume calibration variables, will also influence the 
accuracy of the pseudo-3D outputs. 

Opensource VML software has been applied to a variety of sport-specific actions and settings for kinematic 
analyses. For example, OpenPose has been applied to running (Van Hooren et al., 2023) and cycling 
(Serrancolí et al., 2020), BlazePose to javelin (Köykkä et al., 2022), and AlphaPose to badmington (Ding et 
al., 2022). As a sample lab-based comparison of these three Opensource VML software (OpenPose v1.6.0; 
AlphaPose v0.3.0; and DeepLabCut’s pre-trained human pose model v2.1.7) against outputs from a 3D full 
body marker-based motion capture system (Qualysis), comparative trials of walking, running and 
countermovement jumps were performed (Needham et al., 2021). The researchers reported a large 
systematic difference (of between 30-50mm) in the approximated hip and knee joints; while much smaller 
variance was found in the ankle joint (1-15mm) which varied depending on the activity (see Figure 5). Where 
there are large systemic differences in approximated joint centres, errors are compounded when 
differentiating these data for velocity analysis, further highlighting the need for training datasets that 
incorporate biomechanically informed joint centre annotations. OpenPose and AlphaPose demonstrated 
comparable performance to one another and outperformed DeepLabCut. The researchers suggested that the 
position differences from the gold standard 3D marker-based motion analysis was likely due to mislabelling of 
ground truth data in the training datasets. This highlights that a simple comparison of HPE outputs to a gold-
standard marker-based system is problematic. The standard HPE datasets are not constrained to any real 
functional joint centre, while traditional marker-based system incorporates significant modelling processes to 
determine the functional joint centre throughout a segment range of motion. 
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Figure 5. Example mean (± SD) differences between marker based and markerless trajectories for the 
right hip joint centre trajectories of a single participant (P10) during walking (left), running 

(centre) and jumping (right). Marker based trajectories (black), OpenPose (green), AlphaPose 
(blue) and DeepLabCut (red). Row 1 = anterior–posterior differences. Row 2 = medial–lateral. 
Row 3 = superior–inferior differences. Row 4 = 3D Euclidean differences. Reprinted from “The 

accuracy of several pose estimation methods for 3D joint centre localisation” by L. Needham et 
al., 2021, Scientific Repots 11(1), 20673. 

 

A prominent opensource VML software package for using HPE to estimate both the 3D kinematics and 3D 
kinetics is OpenCap, which has been in development at Stanford University since 2019. OpenCap comprises 
an iOS application, a web application, and cloud computing. The web application enables users to record 
videos simultaneously on 2 or more iOS devices and to visualise the resulting estimated 3D kinematics. 
Figure 6 illustrates an overview of the OpenCap data collection and analysis methods used to estimate 3D 
kinematics and kinetics. Using cloud-based computing, 2D keypoints are extracted from multi-view videos 
using either OpenPose or HRNet algorithms, with these algorithms reportedly used due to their performance 
and inclusion of foot keypoints (Uhlrich et al., 2023). Pseudo-3D keypoints are computed by triangulating 
these synchronised 2D keypoints. These pseudo-3D keypoints are converted into a more comprehensive 3D 
anatomical marker set using a recurrent neural network (LSTM) trained on motion capture data. 3D 
kinematics are then estimated from marker trajectories using deep learning models and inverse kinematics in 
OpenSim. Finally, kinetic measures are estimated using muscle-driven dynamic simulations that track 3D 
kinematics.  

 



 

16 

OFFICIAL 

 

Figure 6. Simplified overview of OpenCap data collection and analysis pipeline for estimating 3D 
kinematics and kinetics. Reprinted from “OpenCap: Human movement dynamics from 

smartphone videos” by S. D. Uhlrich et al., 2023, PLOS Computational Biology, 19(10), 
e1011462. 

In a recently published article, the OpenCap was compared to results from an 8-camera marker-based 
motion analysis system and force plate analysis using 4 separate simple dynamic activities: walking; squats; 
sit-to-stand and drop jumps (Uhlrich et al., 2023). For the laboratory-based ground truth comparison, the 3D 
kinematics and kinetics were calculated from the measured marker and forceplate data using OpenSim with 
the same modelling and simulations pipeline used in the OpenCap process. Results shown in Table 1 show 
the results of the comparative analysis for 10 healthy adults. Errors for each activity were averaged over trials 
and participants (n = 10), and the reported mean is an average over activities and degrees of freedom (six for 
pelvis position and orientation [kinematics only], three for the lumbar, three per hip, one per knee, and two 
per ankle). Kinematic and joint moment errors are presented as the mean and range over the degrees of 
freedom, and kinetic errors are additionally presented as the MAE as a percentage of the range. 

Table 1. Mean absolute error (MAE) in kinematics and kinetics from OpenCap compared to laboratory-based 
motion capture and force plates. Reprinted from “OpenCap: Human movement dynamics from 
smartphone videos” by S. D. Uhlrich et al., 2023, PLOS Computational Biology, 19(10), e1011462. 

 

The authors also highlighted that the outcome of OpenCap analysis can be influenced by both environmental 
and experimental factors. To maximise the accuracy of the results the authors recommended following best 
practice processes when collecting video data of the activity. These included recommendations on the 
subject clothing and background; placement of cameras to minimise occlusions; adjusting to common subject 
entry points in the fields of view; and positioning the cameras at an optimal distance from the subject and 
calibration locations.  

In addition to these Opensource VML software, commercially available software for marker-less tracking is 
now available, such as, Theia3D (https://www.vicon.com/software/markerless/). Theia3D software is easy to 
use but relies on a multicamera setup. When assessed against marker-based motion capture for walking, 
squatting, and forward hopping Theia3D was accurate for sagittal plane knee flexion (1-3°) but showed 
greater error in other joints and planes of motion (e.g., 22° for hip flexion-extension during squatting, 8° for 
ankle flexion-extension during hopping, and 8.29° for ankle rotation) (Ito et al., 2022). The advantage of these 
software, however, is that they also include supporting analysis software. In the case of Theia3D, Vicon 
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ProCalc 1.5 can be used to generate joint data and visuals, or to export results into Visual3D, Python or 
MATLAB for further biomechanical analyses.  

While understanding the accuracy of reliability of VML approaches relative to a gold-standard is appropriate, 
it is also important to highlight that the end use-case of VML is often a field-based testing scenario. In this 
case, it is essential to understand how the VML approach would compare to current scenario-based testing 
options. Typically, this would be a 2D video analysis protocol aligned with identified critical performance 
variables. As such, validation of the current technology is also appropriate to determine if the potential 
advantages of VML, through its decreased analysis time, is an appropriate substitution based on the 
performance requirements. To highlight this, compared to a gold standard marker-based opto-reflective 
system (Vicon); ‘3D’ video digitising of the elbow angle was performed during a cricket bowling action using a 
mechanical arm moving through a known range of motion (Elliott et al., 2007). Results showed that RMS 
error for the marker-based system was 0.6°, with the ‘3D’ manual digitising at 2.3°. However, in real-world 
tests, with shirts occluding parts of the segment and joint centre, the RMS error was reported as significantly 
higher. This highlights the need for validity testing of both the traditional analysis protocol and the proposed 
VML process to happen in-situ and concurrently. 

With a view to utilising VML approaches to automate simple kinematic analyses in biomechanical training or 
competition analysis, the ability to incorporate accurate automated key frame detection would be a crucial 
first step in the provision of representative VML output data. An example of this could be in the provision of 
key performance-based parameters such as the degree of knee bend during eccentric loading of the take-off 
leg during long jump or high jump take-off stance phase. The ability to have an accurate foot strike detection 
algorithm within the VML pipeline would be critical. Likewise, effective algorithms for toe-off detection would 
also be crucial in determining accurate stance phase time.  

Preliminary results from Dr. Mundt from UWA (within current AIS research project on the ‘A Biomechanically 
Informed Pose Estimation Model for Australian High Performance Sport, 2023) has highlighted the 
inefficiencies in current algorithms to define key events from the simplistic pose estimation outputs to the 
level of accuracy that would be required for critical variable outcome feedback. To highlight this, the knee 
flexion/extension angle during a series of moderate running trials was quantified at the frame prior (based on 
50Hz filming) and after for their defined foot strike and foot flat conditions. Substantial performance outcome 
differences were highlighted based on the time point selected (see Figure 7), reinforcing the importance of 
accurate and representative key frame detections within the VML processes. 

 

Figure 7. Average knee joint calculation through variances in foot strike detection and foot flat detection 
for moderate speed running in OpenPose. 

It is essential to recognise that any reported error analysis or validation needs to be considered with 
situational context and applying referenced error rates is not sufficient to ensure that the resulting 
performance outcomes are within the degree of accuracy and reliability that can be applied to a field-based 
setting. Validation of the action of interest in the environment (or range of environments) that the VML will be 
used in will be essential to determine validity and reliability in that sports-specific and environment scenario.  
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5. Challenges and best practices 

VML technology shows significant promise for the future of sport science, however, in its current form it is not 
without limitations. Recall the bird watching analogy from earlier in this report. Now imagine the ‘trained 
birdwatcher’ is placed in a new environment; it is foggy, the trees are denser and different colour, and there 
are several species of birds that are like those that they had originally been trained to identify. The capacity to 
locate and classify bird species is now limited and may lead to false positive classifications. When the margin 
for winning and losing in sport is so small, the accuracy of performance outcomes derived by VML needs to 
be appropriate as it may lead to the provision of incorrect or misleading information. The potential risks 
escalate when this information is used to inform changes to an athlete’s program, strategy or technique as 
the long-term effect of wrong information in these cases can then be significant. Understanding challenges 
associated with VML can help inform best practices when implementing this technology in Australian HP 
sport. 

 

5.1 Data capture and modelling 
Figure 8 illustrates several key domains that need to be considered when developing a robust VML model. 
Data capture quality and specificity of the dataset are paramount. Unlike other experimental designs, a priori 
sample size calculations for VML datasets aren’t applicable (Richter et al., 2021). Ensuring training datasets 
are large enough and specific are essential for ecological validity of the model; “quality-in equals quality-out”. 
Many opensource and commercially available VML models are trained on general populations performing 
non-sport specific actions and therefore estimated joint centres are not based on biomechanically informed 
datasets (Rapczyński et al., 2021). Coupled with this is the issue that many of the data sets are mass-
annotated by people without any specific training in defining anatomical joint centres or landmarks, leading to 
problems in joint centre approximations resulting from movement of a segment about a joint through its full 
range of motion. High quality sport-specific datasets are generally small-scale but could be artificially 
enlarged by leveraging on pre-annotated motion capture datasets (Mundt, 2023). However, given that these 
datasets are generally derived from laboratory settings and include markers in the video, their ecological 
validity in applied settings without makers comes into question (Nibali et al., 2021). The Australian Sports 
Pose Dataset (ASPset-510) was developed with this limitation in mind and consists of video clips with 
pseudo-3D pose annotations across a variety of dynamic sports-related actions in applied environments 
(Nibali et al., 2021). Updating pre-trained models with additional sports-specific data is another method to 
improve specificity (Kitamura et al., 2022). Regardless of what the dataset consists of, whether the model is 
ecologically valid for a given task won’t be known until it assessed in the setting of interest, with the athletes 
of interest, and performing the tasks of interest. 
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Figure 8. Challenges associated with feature-based machine learning. Reprinted from “Machine learning 
in sports science: challenges and opportunities” by C. Richter, 2021, Sports Biomechanics, p2. 

 

Whilst bespoke, open source, and commercial VML approaches have been validated and published in the 
extant literature, their accuracy varies, and even sport-specific models will be influenced by environmental 
factors. For instance, if the model is trained on annotated images of athletes performing javelin throwing 
during night training sessions under artificial lighting, accuracy of this model under midday sun may be 
questionable. For the dataset to be specific it needs to include variability in environmental factors (e.g., 
day/night, rain, cloud, sun) and athletes. The actions of the sport will also need to be reflected in the dataset, 
for example, OpenPose was trained on people in normal orientations but was found to mislabel the legs as 
arms, and vice versa, during extreme poses such as a handstand (Figure 9) (Kitamura et al., 2022). For 
para-athletes, sport-specific VML models require development and specificity of these models to different 
classifications of athletes needs to be well considered. Models “can only estimate data well that is similar to 
those they are trained on” (Mundt, 2023, p. 17). 

 

Figure 9. Exemplar of incorrect HPE (b) due to training on a non-specific dataset and subsequent correct 
HPE (c) with refinement of the model with sports-specific data. Reprinted from “Refining 

OpenPose with a new sports dataset for robust 2D pose estimation” by T. Kitamura, 2022, 
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, p672. 
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Data capture techniques and the subsequent dataset quality is also dependent upon hardware specifications. 
Accuracy of point recognition models trained in DeepLabCut were compared with gold-standard 3D marker-
based motion capture system in running (Van Hooren et al., 2023) and manual digitisation in swimming 
(Papic et al., 2021). No significant differences in sagittal plane hip angles were found with the gold-standard 
approach when running at 2.78ms-1, but accuracy was reduced at 3.33ms-1 due to motion blur associated 
with a 50Hz camera capture rate (Van Hooren et al., 2023). Errors in glide kinematic outcomes were within 
the bounds of intra-rater manual digitisation (95%CIs of five repeated manual digitisation attempts on 
separate days), however, relative error increased at higher underwater glide velocities due to motion blur 
associated with the 30Hz camera capture rate and poor lighting conditions (Papic et al., 2021). As with 
manual digitising, when the target shape is obscured or blurred in video, point recognition models are 
susceptible to digitisation error (Zhang & Yang, 2021). To limit image distortion and ensure appropriate 
capture quality for a training dataset one must consider appropriate camera specifications for the given task. 
This should be reflected in the performance practitioner’s skill set in following best practice for field-based 
motion analysis. As with any filming associated with quantitative analysis through any manual digitising 
process, optimal camera set-up is required to deliver the best possible outcome for a given VML 
methodology. The appropriate setting of shutter speed, as an example, will minimise any of the motion blur 
reported in the research presented above provided that the lighting conditions are appropriate. Likewise, the 
selection of an appropriate filming frame rate to complement the activity being analysed will ensure that key 
event detection is maximised. However, this is dependent on whether the ML algorithms have been trained 
on a sufficient frame rate to inform the final model. 

For object recognition models targets of interest need to be clearly visible in most frames, and where 
obscured, appropriate error thresholds need to be selected to remove incorrectly labelled points. This can be 
automated in the processing phase to include interpolation of missing data, with a recognition that quality 
control and validation of the sports specific scenario being investigated will be crucial to ensure data hygiene 
is appropriate. Point recognition models are more appropriate for single camera 2D biomechanical analyses 
in applied settings, especially for actions that are primarily in a single plane of motion. In general, fixed 
camera setups with pre-calibrated capture areas can improve data capture quality and optimise accuracy of 
biomechanical outcomes derived from VML techniques within the limitations that have been discussed earlier 
in the report.  

The majority of VML studies use single camera setups which reduce human setup requirements and 
computational effort. However, detailed features may be missed due to occlusion of landmarks and body 
segments. Multi-camera approaches for event recognition models and HPE provide multiple viewpoints and 
reduce occlusion but increase computational requirements (Cust et al., 2019; Zhang & Yang, 2021) and 
might not be feasible for applications in training and competition environments. There is little literature to 
inform optimal camera positions within sport specific analyses in a multi-camera VML approach and there will 
likely be a considerable process of optimisation in this regard to minimise resultant errors or reduced 
reliability. When considering temporary field-based testing scenarios, this has the potential to affect inter-
testing validity and reliability and should be considered within any validation process. When developing a 
bespoke VML application a common barrier to VML implementation is access to appropriate hardware to 
train complex models. VML software require graphics processing units (GPUs) with an appropriate level of 
Video Random Access Memory (VRAM) and overall high computing power to train models on large datasets 
for many iterations, which can be costly and time consuming. Cloud-based computing power can be 
leveraged to train VML models using platforms such as GoogleColaboratory (i.e., virtual GPUs) but may 
present with challenges around regional data storage and privacy policies. 

Best practice for model development also involves determining what features are selected in the dataset and 
how meaningful they are (Figure 8). Determining appropriate feature selection is more applicable to VML 
event recognition models. For models to be interpretable, a small selection of key features will be more 
beneficial than training a model on all outcomes as this can increase classification errors (Richter et al., 
2021). For example, the previously mentioned soccer event detection model had greater accuracy for 
detecting four events (corner, free-kick, long view with no events, close-up view) compared with the addition 
of penalty and goal events into the model (Hong et al., 2018). 
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5.2 Ecological validity of models 
As detailed throughout this section, a ‘one size fits all’ VML software will likely not be applicable for all 
practitioners and settings. The application of models in Australian HP sport will need to consider the usability 
of different VML models and include situational evaluations of their accuracy to ensure ecological validity. 
Evaluation of model accuracy compared with the ground truth should be conducted on performance and/or 
biomechanical outcomes of interest. To begin this process an ‘acceptable error’ threshold needs to be 
established based on the desired outcome. This threshold will require consultation between end users 
(practitioner, coach, and athletes) and is likely to be fluid. For example, accuracy of detecting headers in 
soccer using DeepImpact was 92.9% for a large number of assessed actions (Rezaei & Wu, 2022), which 
may be appropriate for injury monitoring. However, missing 7% of goal attempts in a hockey competition 
when reviewing game footage or 7% of derived shoulder angular velocities during cricket bowling with high 
relative error may be inappropriate for the desired outcome.  

This reinforces the requirement of the performance support practitioner and the coach to have robust 
discussions on what the expectations are of the testing methodology sensitivities (irrespective of either the 
traditional testing protocol or the proposed VML approach) for the performance outcome results. This entails 
a further understanding of what represents a ‘meaningful change’ in terms of evaluating a training 
intervention and/or a ’discriminant ability’ to be able to confidently discriminate between levels of expertise for 
a given critical variable. If, when conducting validation processes, the practitioner cannot be confident of 
providing results (through either traditional field-based analytics or a VML approach) to within the sensitivity 
required, then further refinement is necessary. For VML, this will likely involve a trial-and-error approach with 
evaluation of model accuracy and subsequent modification to i) the dataset; ii) modelling procedures; iii) 
calibration procedures; and/or iv) data processing techniques (e.g., reconstruction, interpolation, filtering, and 
adjustments). 

Merely observing root-mean-square error of reconstructed landmark positions derived from a model doesn’t 
consider accuracy across certain phases of the action, between athlete differences, and amplified effects of 
digitising error on biomechanical outcomes (Winter, 2009). Biomechanical analyses will often involve 
complex time-series data of an athlete (e.g., joint angles or velocities over a running cycle). Statistical 
Parametric Mapping (SPM) and Functional Data Analysis techniques such as functional principal 
components analysis (fPCA) are effective when evaluating biomechanical waveforms under different 
conditions and their use by sports science researchers and practitioners is increasing due to availability of 
opensource software (Warmenhoven et al., 2019; Warmenhoven et al., 2018). Practitioners could consider 
normalising biomechanical outcomes for a task of interest (e.g., athletics sprint start, rowing cycle, 
breaststroke pullout, triple jump) to time and using time-series statistical techniques to evaluate the 
ecological validity of a VML model. For example, Hooren et al. (2023) used SPM and time normalised RMSE 
analyses to evaluate the accuracy of OpenPose compared with 3D motion capture (Figure 10). This 
approach allowed the researchers to observe possible limitations of the model during certain phases of the 
running cycle and whether the model could be generalised to all participants. No statistical differences were 
found in lower limb joint angles between the two approaches at this running velocity, however, there was 
greater variance in ankle joint angles between methods and errors were higher for some participants for 
certain joint angles (e.g., see the individual light-blue line in the knee angle RMSE figure below). In practice, 
if these errors were above the pre-established ‘acceptable error’ threshold it may be decided that the model 
was not generalisable to several of the athletes.   
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Figure 10. Exemplar of model validation procedures (OpenPose vs marker-based 3D motion capture). Top: 
marker-based (blue) and marker-less motion capture (OpenPose, red) sagittal-plane joint angles 

at 2.78ms −1 for the hip (left column), knee (middle column), and ankle (right column). Middle: 
corresponding paired samples t-test statistic from statistical parameter mapping in relation to the 
critical threshold (red dashed line). Bottom: root-squared error of the difference between marker-

based and marker-less (OpenPose) motion capture for each joint. Coloured lines represent 
individual root squared errors; the thick bold line represents the root-mean squared error 

averaged over all participants per time point. Reprinted from “The accuracy of marker-less 
motion capture combined with computer vision techniques for measuring running kinematics” by 

B. V. Hooren, 2023, Scandinavian Journal of Medicine & Science In Sports, 33, p972. 

 

Despite these challenges we are moving into a world where VML software is proliferating, and sport-specific 
datasets will continue to be developed and made available. This has been reflected by the rapid uptake on 
VML processes within technology applications provided by commercial companies. While outside of the 
scope of this Insight Report, there are other significant aspects of VML technologies that can apply to the 
athlete’s daily performance environment (DPE) including areas like ‘gamification’ which can help drive athlete 
engagement in training sessions if structured well. From a scientific point of view though, many of these 
commercial products demonstrate little or no validation processes that can be applied to provide a level of 
quality assurance.  

The prospect of accurate and feasible VML technologies to provide timely feedback to athletes and coaches 
and inform evidence-based decision making is enticing for HP sport. Given the wide array of VML 
approaches, bespoke software that allows input of pose and calibration data from multiple VML software and 
user-selected outcomes of interest would be advantageous. However, until this time the Australian HP sport 
system will need to leverage the wide array of expertise across practitioners and researchers to collaborate 
on the development and implementation of VML technology. This will require transparency across the 
network, including an understanding of what is currently being performed, what are the limitations of these 
applications, and data sharing.   
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6. VML insights survey 

There were 36 performance support practitioners across a range of NIN and sport specific affiliations (e.g., 
AusCycling, Swimming Australian, Paralympics Australia, Paddle Australia), predominantly within the 
Movement Science disciplines, that voluntarily completed the VML insights survey (Appendix A). Almost all 
responders (97%) conduct video analysis with athletes they work with, across 16 listed individual and team 
aquatic, track, and field-based sports. Across these practitioners, the top three sports they were involved in 
were swimming, cycling, and rowing. Video analyses were performed both in training and competition 
environments, in indoor and outdoor venues. The prevalence of video analysis applications utilised by the 
practitioners is summarised in Figure 111. Most practitioners used video analysis to provide in-session and 
post-session qualitative feedback (training or competition), and quantitative feedback post-session. The most 
frequent response from practitioners included all three of these application types. Only one in four 
practitioners provided quantitative feedback to athletes and coaches within-session, highlighting the potential 
impact that VML technology may have. 

 

Figure 11. Prevalence of video analysis applications by practitioners in high performance sport 

Of the 50% of practitioners who digitise videos to derive kinematic outcomes, Kinovea was the most used 
software (78%), with a mix of other software used by a small proportion of practitioners: CLOGGS, Tracker, 
Dartfish, SiliconCoach, VidMark, KPASS, and other bespoke software. For the remaining 50% of responders, 
barriers to using video analysis techniques included time/labour constraints, access to resources, and 
expertise (Figure 12). 

 

Figure 12. Practitioner-defined barriers to digitising video data. 
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6.1 Video machine learning use 
Practitioners had a good understanding of what VML entails and the potential benefits of this technology for 
sport. Responses centred around several key themes illustrated in Figure 13. 

 

Figure 13. Word cloud of key themes detailed in response to “briefly describe what video machine learning 
means to you?” 

 

Time efficient video processing, with implications for feedback to athletes, was a frequent theme associated 
with VML techniques in the responses. 

 

 

Practitioner responses 

The ability to enhance video capture and analysis processes which 
allows more time for the practitioner to be present to interpret the data 
and provide feedback vs time spent analysing and digitising footage.” 

 
VML utilises artificial intelligence to automate, augment, and/or estimate 
video digitisation and analysis processes. It has the potential to facilitate 
capture and rapid analysis of athlete biomechanics in sporting 
environments without encumbering the athlete.” 

 
Machine learning means automating simple but long and laborious 
processes so that Sport Scientists can deliver useful data more quickly 
and focus their time on the analysis and interpretation of the data.” 

It was also highlighted that there is a need for representative datasets to derive valid kinematic data (a 
concept that was discussed in this report as a potential barrier for practitioners when implementing VML 
methods). 

 

 

Practitioner response 

Using a collection of videos of the same athletic poses or movements as 
inputs in order to train an algorithm (or multiple algorithms) to track and 
process kinematic data related to the overall performance.” 
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Only 28% of the practitioners currently use and/or are testing VML technologies. These practitioners are 
implementing three main technologies as summarised in Figure 14. Use of whole-body pose-estimation 
software appears to be limited across the network (e.g., Theia3D), rather, practitioners are implementing 
software to automate specific time events (e.g., swimming stroke cycles) and point recognition of key body 
landmarks (e.g., head, hip, knee, ankle). 

 

Figure 14. Prevalence of software use across practitioners utilising video machine learning in sport. 

 

Established VML protocols across the network are limited. Those that are established centre on guidance for 
setup and calibration, as well as ongoing analysis and data validation procedures. Examples of protocols that 
are followed include: 

• Bespoke SPARTA2 protocol within the swimming sports science network which includes standards of 
calibration, waterline correction protocols, and rules regarding the manual addition of kick counts and 
breakouts to analysis. 

• Bespoke Theia3D calibration and setup protocol for multicamera analysis – it was indicated that specific 
documentation around naming conventions and post processing methods is required. 

• Elipot, M. (2019). A new paradigm to do and understand the race analyses in swimming: The application 
of convolutional neural networks. ISBS Proceedings Archive, 37(1), 455. 

• Hall, A., Victor, B., He, Z., Langer, M., Elipot, M., Nibali, A., & Morgan, S. (2021). The detection, tracking, 
and temporal action localisation of swimmers for automated analysis. Neural Computing and Applications, 
33, 7205-7223. 
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6.2 Practitioner-defined challenges to VML 
One distinct challenge for VML is that access to validated sport-specific models is limited and these models 
are only optimised for data they have been trained on, as discussed earlier in this report. Consequently, an 
‘accurate’ model for a given task and environment doesn’t necessarily mean that it will be robust and 
translatable to other athletes in a similar, but different, setting. 

 

 

Practitioner responses 

Limited research on the validity and reliability of the kinematic data that is 
produced using machine learning systems in sport.” 

 
…substantial libraries of manually digitised sport data are required for 
sport-specific VML applications.”  

 
The current limits of the video learning sets being used to train the 
algorithms (i.e. lack of video on certain sports and/or of para-athletes).” 

Due to the fast-paced demands of keeping up with the artificial intelligence race, there are concerns around 
implementing VML software before taking the necessary steps to evaluate its ecological validity for each 
purpose. This is especially the case in field-based testing scenarios with constantly changing environments 
with new calibrations needing to be continually performed, begging the question of their practicality. Not 
understanding the limitations and accuracy of models may lead to data misuse and misinterpretation. This 
was a prevalent theme in practitioner responses. Personal knowledge and technical expertise of VML 
methods was another practitioner-defined challenge to implementing VML. Evaluating validity and reliability 
of these systems will require time, practitioner training, technical proficiency, and adequate communication 
between members of the HP sport system.  

 

 

Practitioner responses 

Too high a reliance placed on machine learning and automation means 
that little things may get missed and if you simply trust the process and 
trust the numbers or automation, things may not be interpreted in the 
right manner.” 

 
Risk of potential misuse by coaches, athletes or practitioners who do not 
understand how the data is generated and its associated accuracy and 
reliability.” 

Appropriate “buy in” from all stakeholders needs to be considered if VML technology is going to be effectively 
implemented in Australian HP sport. Proverbially speaking, VML false starts with implementation will need to 
occur in training environments (and be clearly articulated as such) rather that in the real race. Failure to do so 
increases the risk of practitioners, coaches, and athletes not trusting the technology going forward. 
Consultation with end-users should occur at all stages of testing and implementation of this technology. 

 

 

 



 

27 

OFFICIAL 

 

 

Practitioner responses 

Coach understanding and trust of new technology.” 

 
…coach-led support for and capacity to implement and drive 
engagement.” 

 
…can only deploy when fully ready for the athletes / coaches.” 

Practitioner responses reflected common challenges associated with VML which were consistent with those 
described in Section 7. Despite these challenges, 77% of the practitioners have commenced or have 
expressed desire for implementing VML technology, highlighting that “if the technology can reproduce the 
same level of accuracy as humans the possibilities for scaling data capturing is much greater than humans” 
(practitioner response). Current plans centre around sport test cases using 2D fixed setups to expedite 
kinematic data. Practitioners that are interested in exploring this technology further noted that individual 
training and access to transparent guidelines on developing appropriate VML models is needed. 
Furthermore, resources should include time effective workflows for video capture, analysis, and athlete 
feedback.  
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7. Summary of VML Insights Report 
Recommendations 

 

 

1. VML technology holds significant implications for expediting 
analytics but requires situational context and validity 
assessment to maximise effectiveness in the DPE.  

• VML technology can be used for event and action recognition, point recognition (e.g., 
landmarks, objects), shape analysis and HPE to expedite analysis but practitioners will 
need to ensure the VML technology is ‘fit-for-purpose’. Practitioners will need to assess 
and validate suitability based on required environments, performance outcomes and 
measurement sensitivities. 

  
  

 
 

 

2. “Quality-in equals quality-out”: Ecological validity of VML 
models is dependent on data capture quality and specificity of 
training datasets. 

• Camera specifications, setup and following best practice field-based filming processes 
need to be considered when capturing data to minimise image blurring and occlusion of 
the desired task and/or landmarks. 

• Fixed camera setups with pre-calibrated spaces are recommended as they have the 
potential to optimise accuracy and feasibility of VML technology within the limitations and 
constraints that are inherent to the technology and specific VML processes. 

• Datasets need to include variability in environments, athletes, and actions that are 
translatable to the desired sport and outcomes of interest for all types of VML 
technologies. 

• Para-athlete VML datasets are an area for ongoing development and specificity of these 
models to different classifications of athletes needs to be well considered. 

• Pre-annotated datasets (e.g. 3D motion capture) can be leveraged to train VML models 
for a distinct task provided they are task specific. 

• The development of machine learning algorithms to increase the accuracy of key event 
detection is crucial if an automated VML approach is to be incorporated. 

  
  

 

3. Access to VML expertise will be required as bespoke modelling 
methods are not going to be feasible for all practitioners to 
implement. 

• Refinement of pre-existing models with sport-specific data can improve model accuracy 
for a given task, however, these methods require specialised expertise in modelling 
techniques and will need to be considered when planning to integrate VML into the DPE. 

• Collaboration between researchers and practitioners with multidisciplinary expertise 
could be used to support the development of bespoke models for certain sports. 
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4. Using opensource and commercially available VML software is 
a feasible approach for implementing this technology. However, 
a ‘one size fits all’ VML software will not be applicable to all 
situtations in Australian HP sport. 

• Development of activity and environment specific trained models are likely to be required 
to ensure higher fidelity data output compared to generalised models. 

• Opensource and commercially available VML software using generalised models will be 
easier to implement than bespoke trained models, however, their translatability to 
different situations will vary (see recommendation 5). 

  
  

 

5. Ecological validity of VML models need to be established before 
implementation with end users. 

• When evaluating ecological validity, an ‘acceptable error’ threshold needs to be 
established based on the desired outcome. This threshold will require consultation 
between end users (practitioners, coach, and athletes) and is likely to be fluid and 
analysis dependent. 

• A ‘trial-and-error’ approach will need to occur in testing phases of VML technology to 
achieve accuracy within the desired threshold. This will require evaluation of model 
accuracy and subsequent modification to i) the dataset; ii) modelling procedures; iii) 
calibration procedures; and/or iv) data processing techniques (e.g., reconstruction, 
interpolation, filtering, and adjustments). 

• Ecological validity should be evaluated on the derived outcomes of interest, rather than 
just simple accuracy measures (eg. RMSE of estimated joint centres). If time-series 
biomechanical outcomes are of interest, statistical approaches such as FDA and SPM 
can be used to effectively evaluate validity of the model. 

  
 

 
 
 

6. The development of user-friendly software that allows input of 
pose and calibration data from multiple VML software and user-
selected analyses. 

• Software that allows input of coordinate and calibration data from multiple VML software and 
user-selection of data processing, analysis, and outcomes of interest would be advantageous 
for feasibility of this technology in Australian HP sport. 

  

 

7. Practitioner professional development and ongoing technological 
support by experts is required for long-term implementation of this 
technology. 

• Challenges will arise when implementing this technology and practitioners will require 
technical support to address them. Time constraints will be a significant factor that will limit 
practitioners seeking out solutions to these challenges independently. It is recommended that 
these areas be addressed as these may pose as a significant barrier to implementing VML. 

  

 

8. For successful implementation, communication and 
transparency is required. 

• Until VML technology is accurate in all required sports scenarios and easy to implement, 
it is recommended that the Australian HP sport system utilise the wide array of expertise 
across practitioners and researchers to collaborate on the development and 
implementation of VML technology.  

• It is recommended that communication and transparency in the use of VML across the 
network is highlighted as a key action. This should include an understanding of what is 
currently being performed, what are the limitations of these applications, and appropriate 
sharing of data.   
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• Communication will need to include collaboration with end users at all stages of 
developing and implementing this technology to maximise the outcomes of the use of this 
technology. 

  
  

 

9. VML best practice guidelines are required. 
• These guidelines will aim to provide contemporary evidence-based recommendations 

around various VML software and workflow processes for performance support 
practitioners to implement VML. These should also include best practice guidelines for 
optimising data collection and interpretation, with a recognition that these guidelines will 
have situational context. 

• It is recommended that consideration be given to support practitioner training related to 
the implementation of these best practice guidelines.  
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Appendix A: VML insights survey questions 

1. Do you currently use any form of video analysis with the athletes or sports you work with? 

If yes, please detail the sports you currently use video analysis with and the settings in which you 
use them in (e.g., gym, indoor pool, outdoor field):  

2. What are your applications of video analysis techniques?  

Options: Qualitative analysis/feedback within-session (e.g., technical feedback); Qualitative 
analysis/feedback (post-session/later date); Quantitative analysis/feedback within-session (e.g., 
kinematic variables); Quantitative analysis/feedback post-session/later date. 

3. Do you digitise video of your athletes to perform kinematic analyses. 

If yes: please detail what software you use to perform digitisation and analyses in. 

If no: please detail any limiting factors for digitising video and performing subsequent analyses. 

4. Briefly describe what video machine learning means to you.   

5. Do you currently use video machine learning technology for sporting analysis?  

Please elaborate on the software you use and the sports you currently use this technology with.  

6. Do you have established protocols for your video machine learning testing - either guidelines from 
published research or self-established protocols? 

If yes: please provide further information. 

7. Are there plans to work with video machine learning technology in the near future for sporting 
analysis?  

Please elaborate on your plans.  

8. If you do not currently work with video machine learning software would you be interested in 
exploring how these tools could be applicable to you?  

9. In your opinion and/or experience, are there any barriers to using VML in high-performance sport. 
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